Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Basic Microbiol ; : e202400008, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548685

RESUMEN

Arthrobotrys flagrans, a nematode-eating fungus, is an effective component of animal parasitic nematode biocontrol agents. In the dried formulation, the majority of spores are in an endogenous dormant state. This study focuses on dormant chlamydospore and nondormant chlamydospore of A. flagrans to investigate the differences in cyclic adenosine monophosphate (cAMP) and protein content between the two types of spores. cAMP and soluble proteins were extracted from the nondormant chlamydospore and dormant chlamydospore of two isolates of A. flagrans. The cAMP Direct Immunoassay Kit and Bradford protein concentration assay kit (Coomassie brilliant blue method) were used to detect the cAMP and protein content in two types of spores. Results showed that the content of cAMP in dormant spores of both isolates was significantly higher than that in nondormant spores (p < 0.05). The protein content of dormant spores in DH055 bacteria was significantly higher than that of nondormant spores (p < 0.05). In addition, the protein content of dormant spores of the SDH035 strain was slightly higher than that of nondormant spores, but the difference was not significant (p > 0.05). The results obtained in this study provide evidence for the biochemical mechanism of chlamydospore dormancy or the germination of the nematophagous fungus A. flagrans.

2.
Biomed Chromatogr ; : e5840, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38402901

RESUMEN

The incidence of colibacillosis in poultry is on the rise, significantly affecting the chicken industry. Ceftiofur sodium (CS) is frequently employed to treat this disease, resulting in lipopolysaccharide (LPS) buildup. Processing plays a vital role in traditional Chinese veterinary medicine. The potential intervention in liver injury by polysaccharides from the differently processed products of Angelica sinensis (PDPPAS) induced by combined CS and LPS remains unclear. This study aims to investigate the protective effect of PDPPAS on chicken liver injury caused by CS combined with LPS buildup and further identify the polysaccharides with the highest hepatoprotective activity in chickens. Furthermore, the study elucidates polysaccharides' intervention mechanism using tandem mass tag (TMT) proteomics and multiple reaction monitoring (MRM) methods. A total of 190 1-day-old layer chickens were randomly assigned into 12 groups, of which 14 chickens were in the control group and 16 in other groups, for a 10-day trial. The screening results showed that charred A. sinensis polysaccharide (CASP) had the most effective and the best hepatoprotective effect at 48 h. TMT proteomics and MRM validation results demonstrated that the intervention mechanism of the CASP high-dose (CASPH) intervention group was closely related to the protein expressions of FCER2, TBXAS1, CD34, AGXT, GCAT, COX7A2L, and CYP2AC1. Conclusively, the intervention mechanism of CASPH had multitarget, multicenter regulatory features.

3.
BMC Complement Med Ther ; 24(1): 47, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245694

RESUMEN

BACKGROUND: Leguminous Sophora moorcroftiana (SM) is a genuine medicinal material in Tibet. Many research results have reveal the Sophora moorcroftiana alkaloids (SMA), as the main active substance, have a wide range of effects, such as antibacterial, antitumor and antiparasitic effects. However, there are few reports on the inhibition of lung cancer (LC) and its inhibitory mechanism, and the pharmacological mechanism of SMA is still unclear, Therefore, exploring its mechanism of action is of great significance. METHODS: The SMA active components were obtained from the literature database. Whereas the corresponding targets were screened from the PubChem and PharmMapper database, UniProt database were conducted the correction and transformation of UniProt ID on the obtained targets. The GeneCards and OMIM databases identified targets associated with LC. Venny tools obtained the intersection targets of SMA and LC. R language and Cytoscape software constructed the visual of SMA - intersection targets - LC disease network. The intersection targets protein-protein interaction (PPI) network were built by the STRING database. The functions and pathways of the common targets of SMA and LC were enriched by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, molecular docking And A549 cells vitro experiment were performed to further validate our finding. RESULTS: We obtained six kinds of alkaloids in SM, 635 potential targets for these compounds, and 1,303 genes related to LC. SMA and LC intersection targets was 33, including ALB, CCND1, ESR1, NOTCH1 and AR. GO enrichment indicated that biological process of SMA was mainly involved in the positive regulation of transcription and nitric oxide biosynthetic process, and DNA-templated, etc. Biological functions were mainly involved in transcription factor binding and enzyme binding, etc. Cell components were mainly involved in protein complexes, extracellular exosome, cytoplasm and nuclear chromatin, etc., Which may be associated with its anti-LC effects. KEGG enrichment analysis showed that main pathways involved in the anti-LC effects of SMA, including pathway in cancer, non small-cell lung cancer, p53, PI3K-Akt and FOXO signaling pathways. Molecular docking analyses revealed that the six active compounds had a good binding activity with the main therapeutic targets 2W96, 2CCH and 1O96. Experiments in vitro proved that SMA inhibited the proliferation of LC A549 cells. CONCLUSIONS: Results of the present study, we have successfully revealed the SMA compounds had a multi-target and multi-channel regulatory mechanism in treatment LC, These findings provided a solid theoretical reference of SMA in the clinical treatment of LC.


Asunto(s)
Alcaloides , Neoplasias Pulmonares , Sophora , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Medicina Tradicional Tibetana , Fosfatidilinositol 3-Quinasas , Alcaloides/farmacología
4.
Chemotherapy ; 69(1): 49-55, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37591210

RESUMEN

INTRODUCTION: Monitoring of AUC24 was updated recommendation in the guideline for the therapeutic drug monitoring (TDM) of vancomycin in Chinese pharmacological society published in 2020. Vancomycin pharmacokinetic profiles are diverse and unique in critically ill patients because of the drastic variability of the patients' physiological parameters, while the study for population pharmacokinetic (PPK) models in Chinese critically ill patients has been rarely reported. The objectives of this study were to construct a PPK model to describe the pharmacokinetic characteristics of vancomycin in critically ill patients and to individualize vancomycin dosing by model-informed Bayesian estimation for maintenance of AUC24 target at 400-650 mg h/L recommended by the 2020 guideline. METHODS: Vancomycin with different dosing was administered intravenously over 1 h for critically ill patients, TDM was started at 48 h or 72 h since initiation of vancomycin therapy for patients. Blood samples were collected from patients for trough concentrations or Cmax. Vancomycin concentrations were determined by high-performance liquid chromatography method with ultraviolet detection. PPK model was performed using the nonlinear mixed-effect model (NONMEM®). Individual PK parameters for critically ill patients treated with vancomycin were estimated using a post hoc empirical Bayesian method based on the final PPK model. AUC24 was calculated as the total daily dose divided by the clearance (L/h). RESULTS: The PPK of vancomycin was determined by a one-compartment model with creatinine clearance as fixed effects. The PK estimates in the final model generally agreed with the median estimates and were contained within the 95% CI generated from the bootstrap results, indicating good precision and stability in the final model. The visual predictive check plots showed the adequate predictive performance of the final PK model and supported a good model fit. The model-informed Bayesian estimation was used to predict the AUC24 of critically ill patient by the acquired TDM results, and the dosing adjustment by maintenance of AUC24 at 400-650 mg h/L had made a great therapeutic effect for the case. CONCLUSION: This study established a PPK model of vancomycin in Chinese critically ill patients, and individualized dosing of vancomycin by model-informed Bayesian estimation to maintain an AUC24 target at 400-650 mg h/L has been successfully applied in clinic. This result supports the continued use of model-informed Bayesian estimation to vancomycin treatment in critically ill patients.


Asunto(s)
Antibacterianos , Vancomicina , Humanos , Vancomicina/uso terapéutico , Antibacterianos/uso terapéutico , Teorema de Bayes , Enfermedad Crítica , Área Bajo la Curva
5.
Front Pharmacol ; 14: 1277283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954842

RESUMEN

Lonicerae Japonicae Caulis is the aboveground stem part of the Lonicera Japonica Thunb, which belongs to the medicine food homology species in China. It has the effects of clearing away heat, toxic material, dredging wind and unblocking collaterals. Modern research shows that it contains various active metabolites and a wide range of pharmacological effects, which is of great research and clinical application value. It mainly contains organic acids, volatile oils, flavonoids, triterpenes, triterpene saponins and other active metabolites. Its pharmacological effects mainly include anti-inflammatory, antibacterial, antitumor, antioxidant, and repairing bone and soft tissue. Based on the literature reports in recent years, the active metabolites, pharmacological effects and mechanisms of Lonicerae Japonicae Caulis were sorted out and summarized. It lays a foundation for explaining the efficacy material basis and application value of Lonicerae Japonicae Caulis. It aims to provide a reference for the in-depth research, development and utilization of Lonicerae Japonicae Caulis.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37818576

RESUMEN

BACKGROUND: Yujin powder (YJP) is a classic prescription for treating dampness-heat diarrhea (DHD) in Traditional Chinese Medicine (TCM), but the main functional active ingredients and the exact mechanisms have not been systematically studied. OBJECTIVES: This study aimed to preliminarily explore the potential mechanisms of YJP for treating DHD by integrating UPLC-MS/MS and network pharmacology methods. METHODS: Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology was used to determine the ingredients of YJP. And then, the targets of these components were predicted and screened from TCMSP, SwissTargetPrediction databases. The disease targets related to DHD were obtained by using the databases of GeneCards, OMIM, DisGeNET, TTD, and DrugBank. The protein-protein interaction networks (PPI) of YJP-DHD were constructed using the STRING database and Origin 2022 software to identify the cross-targets by screening the core-acting targets and a network diagram by Cytoscape 3.8.2 software was also constructed. Metascape database was used for performing GO and KEGG enrichment anlysis on the core genes. Finally, molecular docking was used to verify the results with AutoDock 4.2.6, AutoDock Tools 1.5.6, PyMOL 2.4.0, and Open Babel 2.3.2 software. RESULTS: 597 components in YJP were detected, and 153 active components were obtained through database screening, among them the key active ingredients include coptisine, berberine, baicalein, etc. There were 362 targets treating DHD, among them the core targets included TNF, IL-6, ALB, etc. The enriched KEGG pathways mainly involve PI3K-Akt, TNF, MAPK, etc. Molecular docking results showed that coptisine, berberine, baicalein, etc., had a strong affinity with TNF, IL-6, and MAPK14. Therefore, TNF, IL-6, MAPK14, ALB, etc., are the key targets of the active ingredients of YJP coptisine, baicalein, and berberine, etc. They have the potential to regulate PI3K-Akt, MAPK, and TNF signalling pathways. The component-target-disease network diagram revealed that YJP treated DHD through the effects of anti-inflammation, anti-diarrhea, immunoregulation, and improving intestinal mucosal injury. CONCLUSION: It is demonstrated that YJP treats DHD mainly through the main active ingredients coptisine, berberine, baicalein, etc. comprehensively exerting the effects of anti-inflammation, anti-diarrhea, immunoregulation, and improving intestinal mucosal injury, which will provide evidence for further in-depth studying the mechanism of YJP treating DHD.

7.
J Ethnopharmacol ; 300: 115741, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36162543

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Pulsatilla decoction (PD), is an herbal formula commonly used for the treatment of ulcerative colitis (UC) in clinical practice, but the mechanism of PD alters the colitis remains elusive. AIM OF THE STUDY: To evaluate the intervention effect of PD on Dextran Sodium Sulfate (DSS)-induced UC based on gut microbiota and intestinal short-chain fatty acid (SCFAs) metabolism, and to investigate the mechanism of action of PD in treating UC. MATERIALS AND METHODS: A 3% (wt/vol) DSS-induced ulcerative colitis model in C57BL/6 male mice was used to evaluate the effect of oral PD in treating UC. The changes in gut microbiota in mice were analyzed by 16SrDNA gene sequencing, and the content of SCFAs in the intestinal contents of mice was determined by gas chromatography-mass spectrometry (GC-MS). Enzyme-linked immunosorbent assay (ELISA) was applied to analyze the expression of inflammatory cytokines in serum and colonic tissues, and western blotting (WB) was applied to analyze the expression of tight junction proteins in colonic tissues. RESULTS: PD can alleviate the symptoms of UC mice, Pulsatilla Decoction high dose treatment group (PDHT) shows the best effect. Compared with the DSS group, the PDHT had significantly lower body mass, disease activity index (DAI) score, colonic macroscopic damage index (CMDI) score, and pathological damage score, at the phylum level, the relative abundance of Bacteroidetes increased while that of Firmicutes and Proteobacteria decreased, at the Genus level, the abundance of Bacteroides and Lachnospiraceae.NK4A136.group increased while that of Clostridium. sensu.stricto。, Escherichia. shigella and Turicibacter decreased. Compared with the DSS group, acetate, propionate, and total SCFAs in the PDHT with significantly higher levels. The concentrations of interleukin-1ß (L-1ß), tumor necrosis factor-alpha (TNF-α), and interleukin-17 (IL-17) decreased whereby the concentration of interleukin-10 (IL-10) increased in the PDHT group. The expression levels of Occludin, zonula occludens-1 (ZO-1), Claudin1, Claudin5, G protein-coupled receptor43 (GPR43) protein, and the relative expression of ZO-1 and Occludin mRNA were significantly increased PDHT group. CONCLUSIONS: PD has a good therapeutic effect on UC mice. The pharmacological mechanism is probably maintaining the homeostasis and diversity of gut microbiota, increasing the content of SCFAs, and repairing the colonic mucosal barrier.


Asunto(s)
Colitis Ulcerosa , Colitis , Pulsatilla , Animales , Bacterias/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colon , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ácidos Grasos Volátiles/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ocludina/metabolismo , Propionatos , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
8.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3887-3897, 2022 Jul.
Artículo en Chino | MEDLINE | ID: mdl-35850847

RESUMEN

Baitouweng Decoction is a famous Chinese medicinal decoction that has been used to treat diarrhea over thousands of years. In this study, we investigated the effect and mechanism of Baitouweng Decoction in the treatment of diarrhea. Wistar rats were randomly assigned into 4 groups: control group, dampness-heat diarrhea model group(modeling by complex factors including high-sugar and high-fat diet, improper diet, hot and humid environment, drinking and intraperitoneal injection of Escherichia coli), Baitouweng Decoction(3.6 g·kg~(-1)) group, and self-healing group. A urine metabolomics approach was developed with ultra liquid chromatography-quadrupole-time-of-flight-mass spectrometry(UPLC-Q-TOF-MS) for metabolic profiling. The differential metabolites were screened out by the multivariate comparison between groups. Diarrhea-related protein targets and the active compounds of Baitouweng Decoction were used to predict the protein targets of Baitouweng Decoction. Cytoscape 3.2.1 was employed to establish a active component-target protein interaction network. Three protein-protein interaction(PPI) networks of component target proteins, diarrhea-related proteins, and differential metabolite-related proteins were established and then merged by BisoGenet. ClueGO was used to perform the gene enrichment based on the genetic similarity. The results showed that Baitouweng Decoction effectively treated dampness-heat diarrhea in vivo. N-acetylserotonin, L-gamma-glutamylcysteine, glutathione, retinoate, melatonin, indole-3-acetaldehyde, L-cystine, biotin, and L-tryptophan were screened as differential metabolites in dampness-heat diarrhea model group. Tryptophan metabolism, glutathione metabolism, biotin metabolism, retinol metabolism, and cysteine and methionine metabolism were involved in the therapeutic effect of Baitouweng Decoction in vivo. A total of 167 targets were identified as major candidates for diarrhea progression. The gene-set enrichment revealed that the targets were involved in reactive oxygen species production, inflammation, and apoptosis. Baitouweng Decoction can restrain inflammation, production of reactive oxygen, and block apoptosis, thereby contributing to the treatment of dampness-heat diarrhea.


Asunto(s)
Medicamentos Herbarios Chinos , Metaboloma , Animales , Biotina , Diarrea/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Glutatión , Calor , Inflamación/tratamiento farmacológico , Metabolómica/métodos , Farmacología en Red , Ratas , Ratas Wistar
9.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(5): 555-558, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37088769

RESUMEN

OBJECTIVE: To investigate the effect of hydroxysafflower yellow A (HSYA) on pulmonary fibrosis induced by bleomycin in mice and transforming growth factor ß 1(TGF-ß1) /Smad signal transduction pathway regulation. METHODS: The pulmonary fibrosis model was prepared by intranasal injection of bleomycin 50 µl (15 mg/kg). ICR mice were randomly divided into control group, model group, HSYA group(6 mg/kg) and dexamethasone (Dex) group(3 mg/kg), with 15 mice in each group. From the next day of modeling, HSYA and Dex groups were intraperitoneally injected with corresponding drugs, while the control group and model group were intraperitoneally injected with the same volume of normal saline, once a day, for 28 consecutive days. After 4 weeks, the mice were sacrificed and the lungs were collected. HE and Masson staining were used to observe the pathological damage of lung tissue; Immunohistochemistry, RT-qPCR and Western blot were used to detect the expressions of TGF-ß1/Smad signaling pathway in lung tissues. RESULTS: Compared with the control group, the model group showed severe alveolitis and pulmonary fibrosis. The mRNA and protein expressions of TGF-ß1 and Smad3 in lung tissues were increased significantly (P<0.01), while the mRNA and protein expressions of Smad7 were decreased significantly (P<0.01). Compared with the model group, the degree of alveolitis and pulmonary fibrosis in the HSYA and Dex groups was reduced significantly. The mRNA and protein expressions of TGF-ß1 and Smad3 in lung tissues of HSYA and Dex groups were decreased significantly (P<0.01), while the mRNA and protein expressions of Smad7 were increased significantly(P<0.01). CONCLUSION: HSYA can alleviate the pathogenesis of pulmonary fibrosis, and its mechanism may be related to the regulation of TGF-ß1/Smad signaling pathway.


Asunto(s)
Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Factor de Crecimiento Transformador beta1/metabolismo , Ratones Endogámicos ICR , Bleomicina/efectos adversos , ARN Mensajero/metabolismo , Fibrosis
10.
Biomed Chromatogr ; 36(2): e5252, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34591996

RESUMEN

Angelica sinensis (AS) is a common Traditional Chinese Medicine used for tonifying blood in China. Unprocessed AS and its four kinds of processed products (ASs) are used to treat blood deficiency syndrome in the country. The different blood-tonifying mechanisms of ASs remain unclear. In this work, a novel method integrating metabolomics and hematological and biochemical parameters was established to provide a complementary explanation of blood supplementation mechanism of ASs. Our results revealed that different ASs exhibited various blood supplementation effect, and that AS parched with alcohol demonstrated the best blood supplementation effect. Eight metabolites from liver tissue and 12 metabolites from spleen tissue were considered to be potential biomarkers. These biomarkers were involved in four metabolic pathways. Correlation analysis results showed that l-aspartic acid and l-alanine (spleen tissue), linoleic acid, and l-cystathionine (liver tissue) exhibited a high positive or negative correlation with the aforesaid biochemical indicators. The blood-supplementation effect mechanism of ASs were related to four metabolic pathways. l-Aspartic acid and l-alanine (spleen tissue), linoleic acid, and l-cystathionine (liver tissue) were the four key metabolites associated with the blood supplementation effect of ASs. This study gives a complementary explanation of the blood supplementation effect and mechanism of action of ASs.


Asunto(s)
Angelica sinensis/química , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Metaboloma/efectos de los fármacos , Aminoácidos/metabolismo , Animales , Cromatografía de Gases y Espectrometría de Masas , Ácido Linoleico/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Metabolómica/métodos , Ratones , Bazo/efectos de los fármacos , Bazo/metabolismo
11.
Biomed Pharmacother ; 137: 111320, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33578232

RESUMEN

In China, Baitouweng Tang (BTWT) is a commonly prescribed remedy for the treatment of ulcerative colitis (UC). Herein, the present study aims to assess the anti-colitis activity of BTWT and its underlying mechanisms in UC BALB/c mice. Induction of UC in BALB/c mice was carried out by adding 3.5% DSS in the drinking water of underlined mice. After UC induction, the mice were administrated with BTWT for 7 days. Clinical symptoms were assessed, followed by analyzing the bile acids (BAs) in serum, liver, colon, bile, and feces of UC mice through UPLC-MS/MS. The modified 16S rDNA high-throughput sequencing was carried out to examine the gut microbiota of feces. BTWT significantly improved the clinical symptoms such as and histological injury and colon shortening in UC induced mice. Furthermore, BTWT remarkably ameliorated colonic inflammatory response. After BTWT treatment, the increased concentrations of UDCA, HDCA, αMCA, ßMCA, CA, and GLCA in UC were decreased, and the levels of some BAs, especially CA, αMCA, and ßMCA were normalized. Moreover, the relative species abundance and gut microbiota diversity in the BTWT-exposed groups were found to be considerably elevated than those in the DSS-treated group. BTWT increased the relative abundance of Firmicutes, Proteobacteria, Actinobacteria, Tenericutes, and TM7, which were statistically lower in the fecal microbiota of UC mice. The relative abundance of Bacteroidetes was found to be elevated in the DSS group and normalized after BTWT treatment. BTWT increased the expression of FXR and TGR5 in the liver. BTWT administration improved DSS-induced mice signs by increasing the TGR5 and FXR expression levels. This result was achieved by the regulation of the BAs and gut microbiota.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colitis Ulcerosa/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Proteínas de Unión al ARN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Colon/microbiología , Colon/patología , Sulfato de Dextran , Heces/microbiología , Regulación de la Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos BALB C , ARN Ribosómico 16S/genética , Receptores Acoplados a Proteínas G/metabolismo
12.
Front Pharmacol ; 11: 197, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194420

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Diarrhea is a major medical problem in clinical practice. According to the theory of traditional Chinese medicine (TCM), different types of diarrhea should be treated with different TCM formulations based on the targeted medical condition. Dampness-heat diarrhea (DHD) is a serious diarrheal disease and Pulsatilla decoction (PD), a TCM, has been found effective against DHD. OBJECTIVE: The aim of this study was to clarify the mechanism of action of PD in DHD using an untargeted lipidomics strategy. MATERIALS AND METHODS: Wistar rats were randomized to four groups, including the control group, model group, PD groups and self-healing group. The PD groups were given a daily intragastric gavage of PD at doses of 3.76 g/kg. The rat model of DHD established by such complex factors as high-sugar and high-fat diet, improper diet, high temperature and humidity environment, drinking and intraperitoneal injection of Escherichia coli., which imitated the inducing conditions of DHD. Then the clinical symptoms and signs, blood routine, serum inflammatory cytokines levels and the histopathological changes of main organs were detected and observed to evaluate DHD model and therapeutic effect of PD. Lipid biomarkers of DHD were selected by comparing the control and model groups with the colon lipidomics technology and an ultra-high performance liquid chromatography (UHPLC) coupled with Q Exactive plus mass analyzer. Multivariate statistical analysis and pattern recognition were employed to examine different lipids within the colon of PD-treated rats. RESULTS: The clinical symptoms and signs of the model rats were consistent with the diagnostic criteria of DHD. After treatment with PD, the clinical symptoms and signs of the rats with DHD were improved; the indexes of blood routine and inflammatory cytokines levels tended to be normal. The lipidomics profile of the model group were evidently disordered when compared to the control group. A total of 42 significantly altered lipids between the model-control groups were identified by multivariate statistical analysis. DHD may result from such lipid disorders which are related to glycerophospholipid metabolism, arachidonic acid (AA) metabolism, and sphingolipid metabolism. After PD treatment, the lipidomic profiles of the disorders tended to recover when compared to the model group. Twenty lipid molecules were identified and some glycerophospholipids and AA levels returned close to the normal level. CONCLUSION: Glycerophospholipid metabolism may play an important role in the treatment of dampness-heat induced diarrhea using PD.

13.
J Ethnopharmacol ; 255: 112775, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32205259

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sophora alopecuroides L. is one of the most commonly used plants in traditional medicine for the management conditions including inflammatory and gastrointestinal disease. However, the therapeutic mechanism of Sophora alopecuroides L.particularly in inflammatory bowel disease (IBD) remains unclear. AIM OF THE STUDY: To evaluate the treatment effects of total alkaloids of Sophora alopecuroides L. in ulcerative colitis (UC) mice model and explore the therapeutic mechanism of KDZ on UC based on bile acid metabolism and gut microbiota. MATERIALS AND METHODS: Colitis were induced in BALB/c mice by administering 3.5% dextran sulfate sodium (DSS) in drinking water for 7 days. The mice were then given KDZ (300, 150 and 75 mg/kg) and the positive drug sulfasalazine (SASP, 450 mg/kg) via oral administration for 7 days. The levels of 23 bile acids in the liver, bile, serum, cecum content and colon were determined through ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS). The cecum microbiota was characterized through high-throughput Illumina MiSeq sequencing. RESULTS: KDZ treatment significantly decreased the disease activity index (DAI) scores and ameliorated colonic injury in DSS-treated mice. The expression of IL-1ß and TGF-ß1 were suppressed, yet, IL-10 was up-regulated by KDZ and SASP treatment compared with those in the model group. Meanwhile, the serum contents of total bile acid and total cholesterol in the DSS group increased significantly compared with those in the control group, but reversed by SASP and KDZ. The relative abundance of Firmicutes increased after KDZ was administration, whereas the abundance of Bacteroidetes decreased. αMCA, ßMCA, ωMCA and CA in the SASP and KDZ groups did not differ from those in the control group, whereas these parameters significantly increased in the DSS group. CONCLUSIONS: KDZ had a protective effect on DSS-induced colitis by mitigating colonic injury, preventing gut microbiota dysbiosis and regulating bile acid metabolism.


Asunto(s)
Alcaloides/farmacología , Ácidos y Sales Biliares/metabolismo , Ciego/efectos de los fármacos , Colitis Ulcerosa/prevención & control , Colon/efectos de los fármacos , Fármacos Gastrointestinales/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/farmacología , Sophora , Alcaloides/aislamiento & purificación , Animales , Ciego/metabolismo , Ciego/microbiología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Colon/metabolismo , Colon/patología , Modelos Animales de Enfermedad , Disbiosis , Fármacos Gastrointestinales/aislamiento & purificación , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos BALB C , Extractos Vegetales/aislamiento & purificación , Sophora/química
14.
Int J Toxicol ; 38(5): 436-444, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31342801

RESUMEN

Triptolide is a major active ingredient isolated from the traditional Chinese herb Tripterygium wilfordii Hook F. However, its use in clinical practice is limited due to its severe hepatotoxicity. Autophagy, a highly conserved intracellular process, is essential for maintaining cytoplasmic homeostasis. Considering that abnormalities in autophagy are closely associated with drug-mediated hepatotoxicity, we applied human normal liver HL7702 cells to elucidate the roles of autophagy in triptolide-induced hepatotoxicity. Our study revealed that triptolide was cytotoxic to HL7702 cells. It markedly increased autophagosome formation and expression of autophagy-related proteins, namely Beclin1 and microtubule-associated protein 1 light chain 3II, and induced oxidative stress. These proautophagic effects were counteracted by pretreatment with N-acetylcysteine, a reactive oxygen species scavenger. Moreover, the pharmacological suppression of autophagy further exacerbated triptolide-elicited decrease in cell viability, increase in lactate dehydrogenase leakage, and activation of apoptosis proteases (caspase 3 and caspase 9). Our findings suggest that triptolide-induced oxidative stress consequently enhances autophagic activity, and autophagy is a cytoprotective mechanism against triptolide-induced cytotoxicity in HL7702 cells.


Asunto(s)
Autofagia/efectos de los fármacos , Diterpenos/toxicidad , Hepatocitos/efectos de los fármacos , Fenantrenos/toxicidad , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular , Compuestos Epoxi/toxicidad , Glutatión/metabolismo , Hepatocitos/metabolismo , Hepatocitos/ultraestructura , Humanos , Malondialdehído/metabolismo , Microscopía Electrónica de Transmisión , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
15.
Biomed Chromatogr ; 33(11): e4629, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31242331

RESUMEN

Pulsatilla decoction (PD) is a classical prescription in traditional Chinese medicine that has therapeutic effects on wetness-heat-induced diarrhea (WHD). To investigate the therapeutic effects of PD in the treatment of WHD and elucidate the potential mechanism, we used a metabolomics strategy on the base of ultraperformance liquid chromatography coupled with quadrupole time-of-flight/mass spectrometry (UPLC-Q/TOF-MS/MS) and analyzed the serum samples of 32 rats to identify differential metabolites and pathways associated with the PD treatment of WHD. With variable importance for projection >1.0 in the Orthogonal partial least-squares discriminant analysis (OPLS-DA ) models and FC ≥1.2 or ≤0.8, 67 differential metabolites in the model and control groups and 33 differential metabolites in the model and PD groups were screened. A total of 23 differential metabolites were selected based on Venny analysis. Functional analysis showed that the differential metabolites identified were primarily involved in pentose and glucuronate interconversions, glycerophospholipid metabolism, tryptophan metabolism, starch and sucrose metabolism, and glycerolipid metabolism. This study suggested that PD exerts inhibitory effects on WHD. In particular, the significant roles of PD for treating WHD lie in regulating perturbed energy metabolism, glycerophospholipid metabolism and glycerolipid metabolism, and promoting lysoPC production restoring the function of intestinal tract.


Asunto(s)
Diarrea/metabolismo , Medicamentos Herbarios Chinos/farmacología , Metaboloma/efectos de los fármacos , Pulsatilla , Animales , Cromatografía Líquida de Alta Presión , Citocinas/sangre , Diarrea/etiología , Femenino , Calor/efectos adversos , Masculino , Metabolómica , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
16.
Chin J Nat Med ; 17(4): 275-290, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31076131

RESUMEN

Danggui Buxue Tang (DBT) is a famous Chinese medicinal decoction. Mechanism of DBT action is wide ranging and unclear. Exploring new ways of treatment with DBT is useful. Sprague-Dawley(SD) rats were randomly divided into 3 groups including control (NC, Saline), the DBT (at a dose of 8.10 g-1), and blood deficiency(BD) (Cyclophosphamide (APH)-andCyclophosphamide(CTX)-induced anaemia). A metabolomics approach using Liquid Chromatography-Quadrupole-Time-of-Flight/Mass Spectrometry (LC/Q-TOFMS) was developed to perform the plasma metabolic profiling analysis and differential metaboliteswerescreened according to the multivariate statistical analysiscomparing the NC and BD groups, andthe hub metabolites were outliers with high scores of the centrality indices. Anaemia disease-related protein target and compound of DBT databases were constructed. The TCMSP, ChemMapper and STITCH databases were used to predict the protein targets of DBT. Using the Cytoscape 3.2.1 to establish a phytochemical component-target protein interaction network and establish a component, protein and hub metabolite protein-protein interaction (PPI) network and merging the three PPI networks basing on BisoGenet. The gene enrichment analysis was used to analyse the relationship between proteins based on the relevant genetic similarity by ClueGO. The results shown DBT effectively treated anaemia in vivo. 11 metabolic pathways are involved in the therapeutic effect of DBT in vivo; S-adenosyl-l-methionine, glycine, l-cysteine, arachidonic acid (AA) and phosphatidylcholine(PC) were screened as hub metabolites in APH-and CTX-induced anaemia. A total of 288 targets were identified as major candidates for anaemia progression. The gene-set enrichment analysis revealed that the targets are involved in iron ion binding, haemopoiesis, reactive oxygen species production, inflammation and apoptosis. The results also showed that these targets were associated with iron ion binding, haemopoiesis, ROS production, apoptosis, inflammation and related signalling pathways. DBT can promote iron ion binding and haemopoiesis activities, restrain inflammation, production of reactive oxygen, block apoptosis, and contribute significantly to the DBT treat anaemia.


Asunto(s)
Anemia/tratamiento farmacológico , Anemia/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Metaboloma/efectos de los fármacos , Metabolómica , Anemia/sangre , Anemia/inducido químicamente , Animales , Cromatografía Liquida , Ciclofosfamida/toxicidad , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Espectrometría de Masas en Tándem
17.
Chin J Integr Med ; 25(3): 233-240, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30178091

RESUMEN

As a major active component extracted from traditional Chinese herb Tripterygium wilfordii Hook F, triptolide exhibits multiple pharmacological effects. Autophagy is an evolutionary conserved intracellular catabolic process involved in cytoplasmic materials degradation. Autophagic dysfunction contributes to the pathologies of many human diseases, which makes it a promising therapeutic target. Recent studies have shown that triptolide exerts neuroprotection, anti-tumor activities, organ toxicity, and podocyte protection by modulating autophagy. This article highlights the current information on triptolide-modulated autophagy, analyzes the possible pathways involved, and describes the crosstalk between autophagy and apoptosis modulated by triptolide, in hope of providing implications for the roles of autophagy in pharmacological effects of triptolide and expanding its novel usage as an autophagy modulator.


Asunto(s)
Autofagia/efectos de los fármacos , Diterpenos/farmacología , Fenantrenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Compuestos Epoxi/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fármacos Neuroprotectores/farmacología , Podocitos/efectos de los fármacos
18.
Neurosci Lett ; 690: 106-111, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30321575

RESUMEN

Many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), are characterised by the intracellular appearance of protein aggregates or insoluble materials. Accelerated removal of related toxic proteins might be beneficial for these diseases. Here we describe an inducible role of Beclin1, an essential regulator for autophagy, in degradation of the familial ALS-linked Cu/Zn superoxide dismutase 1 (SOD1) mutant. We confirmed that the SOD1 mutant exhibited an increased RIPA (radioimmune precipitation assay buffer, containing NP40 and sodium deoxycholate)-insolubility compared with SOD1 wild-type (WT). Also, the insoluble fraction formed by SOD1 mutant was greatly reduced by coexpressing Beclin1 in both neuronal and non-neuronal cell lines. Pharmacological inhibition of autophagy diminished the effect of Beclin1 and resulted in an accumulation of insoluble SOD1. Our results support the role of Beclin1 in the involvement of autophagic degradation of SOD1 mutant. We propose Beclin1 enhances autophagy and presents a possible therapeutic strategy for familial ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Autofagia/efectos de los fármacos , Autofagia/fisiología , Beclina-1/fisiología , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa/metabolismo , Cloruro de Amonio/farmacología , Animales , Beclina-1/biosíntesis , Células Cultivadas , Humanos , Ratones , Mutación , Agregación Patológica de Proteínas/metabolismo , Radioinmunoensayo , Sirolimus/farmacología , Solubilidad , Superóxido Dismutasa-1/genética , Transfección , Regulación hacia Arriba
19.
Biomed Chromatogr ; 33(2): e4402, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30255631

RESUMEN

Lipopolysaccharide (LPS)-induced inflammation occurs commonly and volatile oil from Angelica sinensis (VOAS) can be used as an anti-inflammatory agent. The molecular mechanisms that allow the anti-inflammatory factors to be expressed are still unknown. In this paper, we applied gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography-time-of-flight mass spectrometry (LC-Q/TOF-MS) based on a metabolomics platform coupled with a network approach to analyze urine samples in three groups of rats: one with LPS-induced inflammation (MI); one with intervention with VOAS; and normal controls (NC). Our study found definite metabolic footprints of inflammation and showed that all three groups of rats, MI, intervention with VOAS and NC have distinct metabolic profiles in urine. The concentrations of 48 metabolites differed significantly among the three groups. The metabolites in urine were screened by the GC-MS and LC-Q/TOF-MS methods. The significantly changed metabolites (p < 0.05, variable importance in projection > 1.5) between MI, NC and VOAS were included in the metabolic networks. Finally, hub metabolites were screened, including glycine, arachidonic acid, l-glutamate, pyruvate and succinate, which have high values of degree (k). the Results suggest that disorders of glycine, arachidonic acid, l-glutamate, pyruvate and succinate metabolism might play an important part in the predisposition and development of LPS-induced inflammation. By applying metabolomics with network methods, the mechanisms of diseases are clearly elucidated.


Asunto(s)
Angelica sinensis/química , Antiinflamatorios/farmacología , Inflamación/orina , Redes y Vías Metabólicas/efectos de los fármacos , Metaboloma/efectos de los fármacos , Aceites Volátiles/farmacología , Animales , Biomarcadores/orina , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/efectos adversos , Hígado/efectos de los fármacos , Hígado/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Aceites de Plantas/farmacología , Ratas , Ratas Wistar , Ácido Succínico/metabolismo
20.
Zhongguo Zhong Yao Za Zhi ; 43(18): 3662-3667, 2018 Sep.
Artículo en Chino | MEDLINE | ID: mdl-30384530

RESUMEN

Astragalus membranaceus pathogenesis-related protein 10 (AmPR-10) is largely expressed in case of environmental pressure and pathogen invasion. This study aims to explore the biochemical functions of AmPR-10. The dried root of Astragalus membranaceus was mechanically homogenized and extracted by Tris-HCl buffer to obtain its crude extract, which was then purified by anion exchange chromatography and gel filtration chromatography to obtain electrophoretically pure AmPR-10. The nuclease activity of AmPR-10 was tested with different RNAs by detecting the absorption value at 260 nm. The results demonstrated potent nuclease activity toward yeast tRNA, yeast RNA, Poly (A) and Poly (C). The optimum reaction temperature was 50 °C and pH was 7-8. EDTA showed no effect on its activity, while Mg²âº exhibited potent activation effect on the activity, and Co²âº, Ca²âº and Zn²âº manifested moderately inhibition of the activity. Since AmPR-10 had no sequence homology with other known nucleases, AmPR-10 was probably a novel nuclease. The inhibition kinetic data against papain was analyzed by Lineweaver-Burk plots, and the results showed that the inhibition of papain followed noncompetitive-type kinetics. AmPR-10 played an important role in Astragalus membranaceus defense mechanism against environmental pressure and pathogen invasion, which may be achieved by inhibiting cycteine enzymes activity.


Asunto(s)
Planta del Astrágalo/enzimología , Desoxirribonucleasas/metabolismo , Proteínas de Plantas/metabolismo , Planta del Astrágalo/genética , Cromatografía en Gel , Desoxirribonucleasas/genética , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...